Models and Practice of Neural Table Representations

Madelon Hulsebos

Xiang Deng

Huan Sun

Paolo Papotti

Presenters

Madelon Hulsebos

 PhD candidate at the Intelligent Data Engineering Lab of the University of Amsterdam

Xiang Deng

 Ph.D. candidate in the Department of Computer Science and Engineering at the Ohio State University

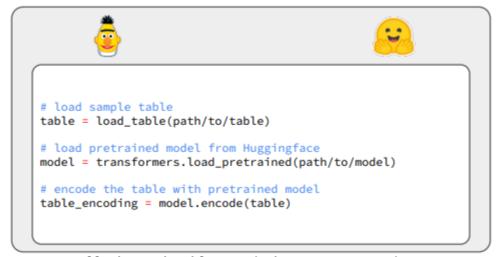
 Associate professor in the Department of Computer Science and Engineering at Ohio State University

Associate Professor in the Data Science Department at EURECOM

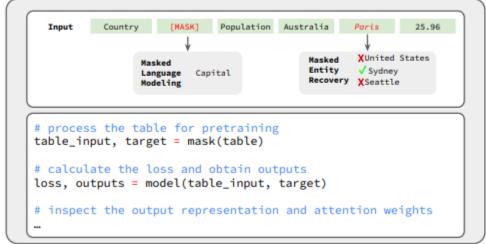
Tutorial Outline — First Part

- Motivation
 - Natural Language and Data-centric Applications
- Language Models and Transformers [q&a]
- Developing & Consuming Tabular Data Representation
 - Training Datasets
 - Input Processing [q&a]
 - Model Training & Architecture [q&a]
 - Output Model Representation: Tabular Language Model
 - Consuming Tabular LMs [q&a]
- Open Challenges [q&a]

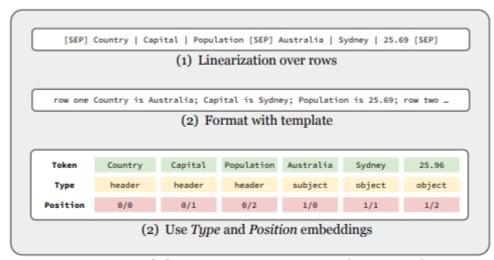
Tutorial Outline – Second Part: Hands-on session



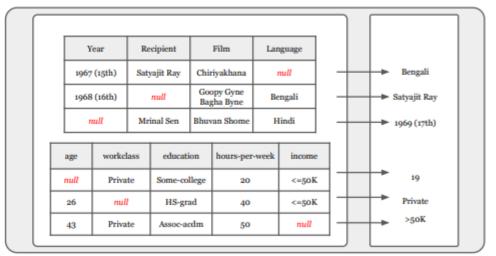
1. Off-the-shelf model inputs and outputs



3. Pretraining and output encoding



2. Table processing and encoding



4. Fine-tuning and analysis

Tabular data

Population in Million by Country

Country	Capital	Population
Australia	Canberra	25.69
France	Paris	67.39
Bolivia	La Paz	11.67

France

Capital	Paris
Population	67.39M
Size	644K Km2
President	Emmanuel Macron

Appears and Goals

Club	Season	League		
		Division	Apps	Goals
Cannes	1988-89	Ligue 3	2	0
	1989-90		0	0
	1990-91		28	1
	1991-92		31	5 (1)

Problems and Challenge

- With Natural Language (NL) Input:
 How to semantically "match" the NL input with information in tables
- No NL Input: Semantically understand table content and map it to a label space
- Tables: different relationships wrt NL sequences
 - Cell values and headers are in data structures (row, column), which bear semantic meaning

Table-based Fact-Checking (TFC)

• Fact-checking (tabular setting): verify if an input claim, expressed in natural language (NL) is true/false against some trusted structured data

Population in Million by Country

Country	Capital	Population
Australia	Canberra	25.69
France	Paris	67.39
Bolivia	La Paz	11.67

Input claim: France has a population of 67.39 million.

Output: True

Input claim: Bolivia has more citizens than France.

Output: False

(Aly et al, 2022; Karagiannis et al, 2020)

https://coronacheck.eurecom.fr

• Tabular Natural Language Inference: check whether an input relational table implies or not a given NL claim

Input Text: France has a more than double population of Australia.

Output: Entail

Input Text: France has a higher population density than Bolivia.

Output: Does not entail/Not Enough Information

(Eisenschlos et al, 2020) 7

Question Answering (QA)

- Find the cell(s) that answer a given input NL question
- Complexity ranges from simple lookup queries to complex ones involving aggregations and numerical reasoning

Population in Million by Country

Country	Capital	Population
Australia	Canberra	25.69
France	Paris	<mark>67.39</mark>
Bolivia	La Paz	11.67

Question: What is the population

number of France?

Output: 67.39

Population in Million by Country

Country	Capital	Population
Australia	Canberra	25.69
France	Paris	<mark>67.39</mark>
Bolivia	La Paz	11.67

Question: What is the total

population in France and Bolivia?

Answer: 79.06

(Herzig et al, 2020)

Semantic Parsing (SP): Text-2-SQL

 Given a question in NL and a database schema, generate a declarative query expressed in SQL (or SPARQL)

Population in Million by Country (PMC)

Country	Capital	Population	
Australia	Canberra	25.69	
France	Paris	67.39	
Bolivia	La Paz	11.67	

NL text: Find the capital of Australia.

Output: Select Capital from PMC where Country = "Australia";

NL text: What is the average population? **Output:** Select AVG(Population) from PMC;

(Yu et al, 2021; Gkini et al, 2021)

Table Retrieval (TR)

 Given a question in NL and a set of tables, identify the tables that can answer the question

Population in Millions by Country

Country	Capital	Population
Australia	Canberra	25.69
France	Paris	67.39
Bolivia	La Paz	11.67

GDP by Country in Trillions USD

Country	Capital	GDP
Germany	Berlin	3.806
France	Paris	2.603
Australia	Canberra	1.331

Statistics for France

Metric	Value	Year
Population	67M	2020
GDP	2.6	2020
Size	La Paz	11.67

Question: What is the GDP of Germany?

Table: GDP by Country in Trillions USD

(**Answer:** 3.806)

(Wang et al, 2021; Pan et al, 2021)

Why are they challenging?

Task ID	Task Label	Tasks Coverage	Input	NL	Output
TFC	Table-based Fact- Checking or En- tailment	Fact-Checking Text Refusal/Entailment	Table -	Claim	True/False Refused/Entailed (Data Evidence)
QA	Question Answering	Retrieving the Cells for the Answer	Table -	Question	Answer Cells
SP	Semantic Parsing	Text-to-SQL	Table -	NL Query	Formal QL
TR	Table Retrieval	Retrieving Table that Contains the Answer	Tables	- Question	Relevant Table(s)
TMP	Table Metadata Prediction	Column Type Prediction Table Type Classification Header Detection Cell Role Classification Column Relation Annotation Column Name Prediction	Table		Column Types Table Types Header Row Cell Role Relation between Two Cols Column Name
DI	Data Imputation	Cell Content Population	Table Cell Va	with Corrupt	ed Table with Complete Cell Values

Table Metadata Prediction (TMP)

- Given an input table with corrupted or missing metadata, predict
 - column types and headers, and
 - intra-tables relationships
 - equivalence between columns, entity linking/resolution

Population in Millions by Country

	Capital	Population
Australia	Canberra	25.69
France	Paris	67.39
Bolivia	La Paz	11.67

Predict that the missing column header is **Country**Predict that the table type is a **relational** table

(Cappuzzo et al, 2020; Deng et al. 2020; Li, Yuliang et al 2020, Zhang et al, 2020, Wu et al 2023)

Data Imputation (DI)

 Given a table with corrupted/missing values, populate the missing cell data

Population in Millions by Country

Country	Capital	Population
Australia	Canberra	25.69
	Paris	67.39
Bolivia	La Paz	11.67

Population in Millions by Country

Country	Capital	Population
Australia	Canberra	25.69
France	Paris	67.39
Bolivia	La Paz	11.67

(Biessmann et al, 2019; Deng et al. 2020; Tang et al, 2021; Zhang and Balog 2017)

Text and tabular data

- Several applications use both
 - Table-based Fact-Checking/TNLI (TFC)
 - Question Answering (QA)
 - Semantic Parsing / Text-to-SQL (SP)
 - Table Retrieval (TR)
 - Table Metadata Prediction (TMP)
 - detecting column types, table types, relations, header cells,
 - entity resolution and linking; column name prediction
 - Data imputation (DI)

How can we exploit Neural Table Representation in building such applications?

Tutorial Outline

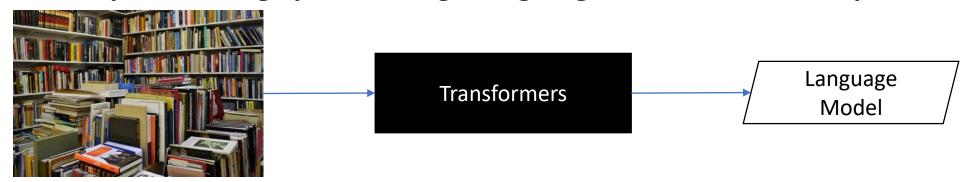
- Motivation
 - Data-centric Applications and Natural Language
- Language Models and Transformers
- Developing & Consuming Tabular Data Representation
 - Training Datasets
 - Input Processing
 - Model Training & Architecture
 - Tabular Language Model
 - Consuming Tabular LMs
- Open Challenges

Deep learning can help with NL text

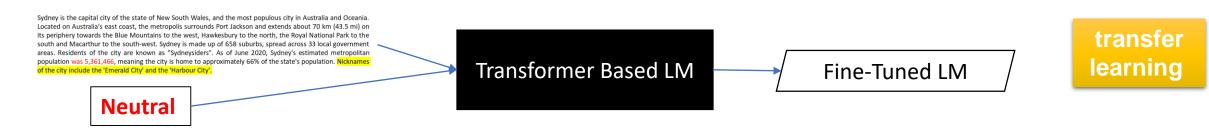
- A language model (LM) is a probability distribution over sequences of words $p_{\text{LM}}(\text{the house is small}) > p_{\text{LM}}(\text{small the is house})$
 - Given a sequence of words, it
 - assigns a probability to the sequence
 - predicts the most probable next word in the sequence
- Modern LMs are
 - systems that understands or generates text by estimating likelihood of words or sequences in a context based on patterns, rules, and statistical relationships
 - obtained by (unsupervised) pre-training on large text corpora
- Pre-trained LMs enable state-of-the-art results in downstream NLP tasks, even in cases with limited amount of annotated training data

How does it work? Big Picture

1- Develop LM through pre-training using large unlabeled text corpora



2- Fine-tune LM using (relatively small) labeled training data for target application



3- Given a new paragraph, predict sentiment

Paris is the capital and most populous city of France, with an estimated population of 2,165,423 residents in 2019 in an area of more than 105 km² (41 sq mi), making it the 34th most densely populated city in the world in 2020. Since the 17th century, Paris has been one of the world's major centers of finance, diplomacy, commerce, fashion, gastronomy, science, and arts, and has sometimes been referred to as the capital of the world.

What can we do with Language Models?

Sydney is the capital city of the state of New South Wales, and the most populous city in Australia and Oceania. Located on Australia's east coast, the metropolis surrounds Port Jackson and extends about 70 km (43.5 mi) on its periphery [...]. Sydney is made up of 658 suburbs, spread across 33 local government areas. Residents of the city are known as "Sydneysiders". As of June 2020, Sydney's estimated metropolitan population was 5,361,466, meaning the city is home to approximately 66% of the state's population. Nicknames of the city include the 'Emerald City' and the 'Harbour City'.

Fact-checking (text):

Sydney's population as of June 2020 is less than 2 millions.

False

Question Answering:

What is an example of a nickname for Sydney?

Fmerald City / Harbour

Emerald City / Harbour

Sentiment Analysis:

Neutral

Document Classification:

Geography

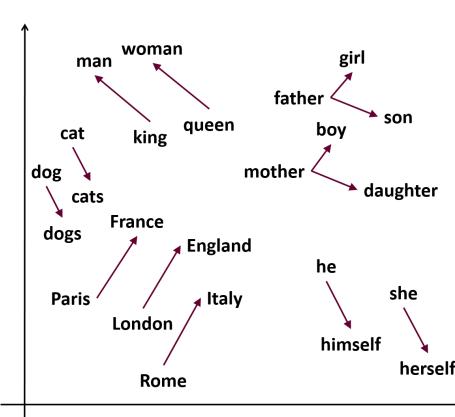
Translation to French:

Sydney est la capitale de l'État de la Nouvelle-Galles du Sud et la ville la plus peuplée d'Australie et d'Océanie.

Using a small labeled dataset, we customize the same pre-trained LM for several tasks

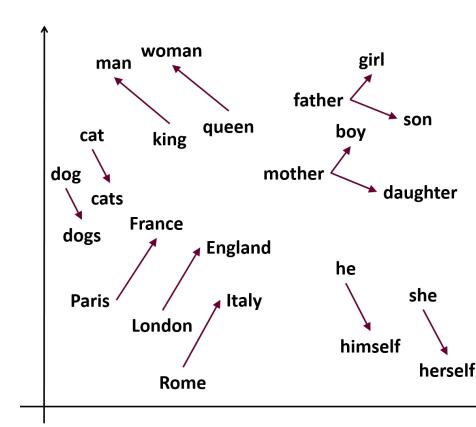
Embeddings

- Focus on neural language models
- Vector representations of words (or other elements) that capture their semantic meaning, relationships, and context in a continuous numerical space
- They allow models to process and analyze textual data more efficiently and accurately
- Popular in NLP since the introduction of algorithms like word2vec (2013) and GloVe (2014)
 - text fed into a neural net that learns to predict a target, such as the surrounding words or next word



Embeddings

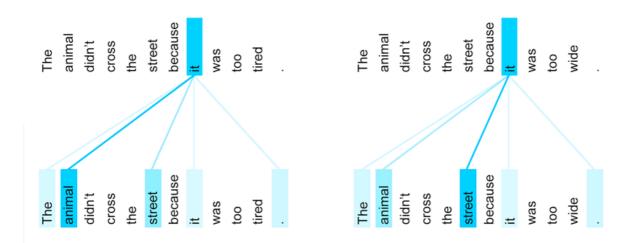
- Instead of using probabilities, each word is mapped to the distributed representation encoded in the networks' hidden layers
 - one word \rightarrow one vector
- Use continuous representations based on ndimensional real-valued word (token)
 embeddings
 - words closer in the vector space are expected to be similar in meaning

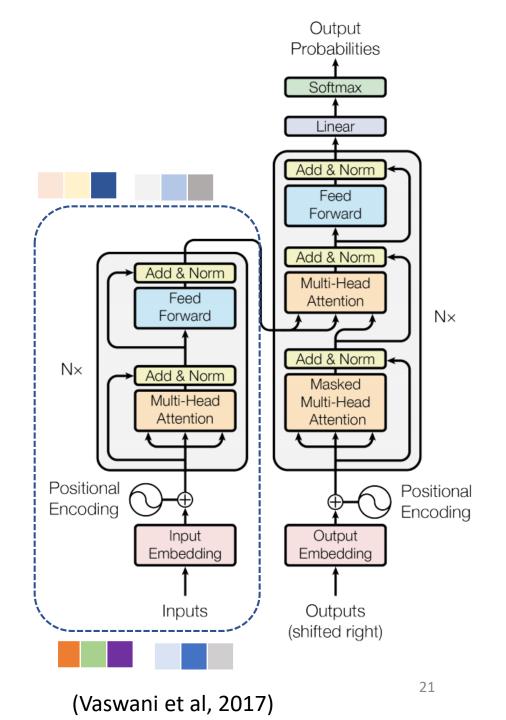


(Mikolov et al, 2013)

Transformers 1/3

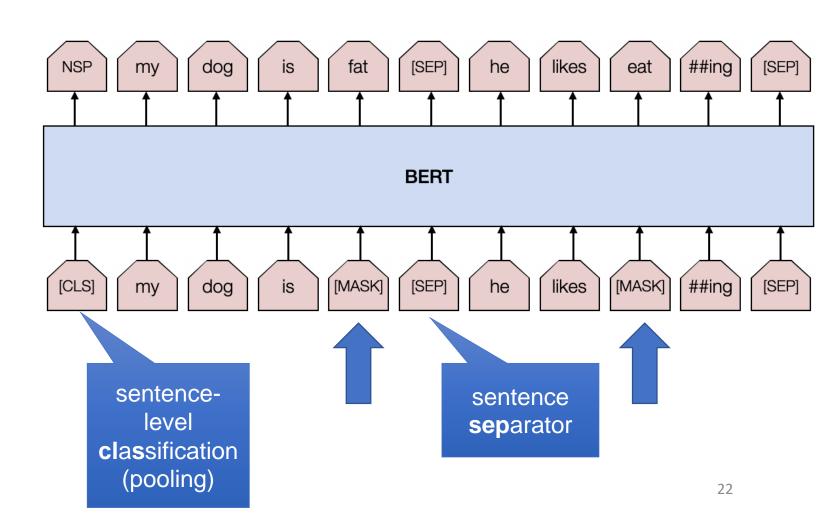
- Many ways to obtain a LM
- Transformers introduced parallelism
 (→GPU/TPU) and enabled larger models
 - Encoder-decoder architecture
 - (Self) **Attention** mechanism to understand relationships between all words in a sentence, regardless of their respective position





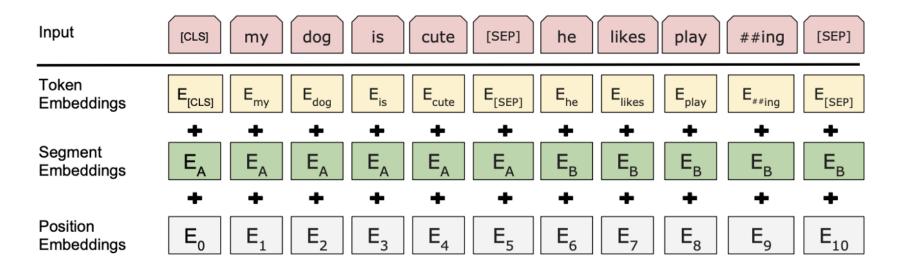
Transformers 2/3

- BERT (encoder only) got SOTA in most NLP task with
 - New pre-training (masking, next sentence)
 - Left and right context from the word
- The LM learns relationships among tokens at multiple levels
 - Grammar/Syntax
 - Semantic



Transformers 3/3

- Token embeddings are complemented with more information
- Position is key as a transformer is not a RNN
 - sequential nature of RNNs precludes parallelization within training examples



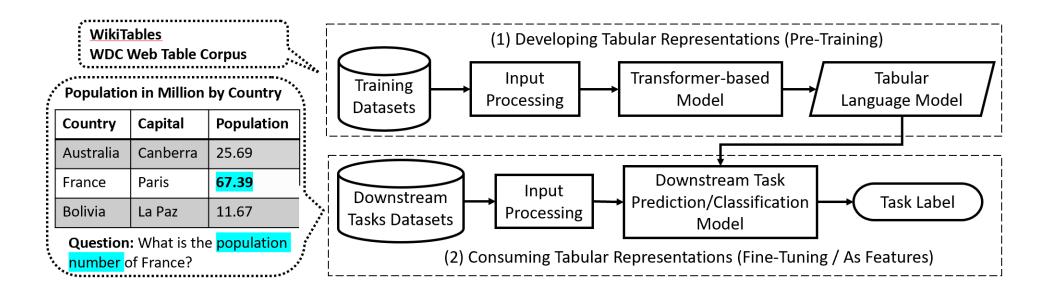
How does it work for Tabular Data?

- LMs are state-of-the-art for NL but tabular data has different forms (relational tables, spreadsheets, entity tables, ...) and different relationships
 - E.g., Position, co-occurrence **vs** same-row, same-column
- Problem: develop LMs that model tabular data
 - How to change the transformer architecture to account for the 2D characteristics of tables and its relationships?

Questions?

Tutorial Outline

- Motivation
 - Data-centric Applications and Natural Language
- Transformers and Language Models
- Developing & Consuming Tabular Data Representation
 - Training Datasets
 - Input Processing
 - Model Training & Architecture
 - Tabular Language Model
 - Consuming Tabular LMs
- Open Challenges



- 1. Training Datasets
- Input Processing
 Data retrieval and filteringTable serializationContext and table concatenation
- 3. Model Architecture and Training
- 4. Output Model Representation: Tabular Language Model
- 5. Fine-tuning Representation for Downstream Tasks

Training Datasets

Training Datasets

- Large number of tables with their context are used for pre-training
 - Better representation, less bias
- Context represents additional textual data that comes with tables
 - Text describing the table: caption, title or document surrounding the table
 - Table metadata: table orientation, header, keys
 - Question and claims addressed by the table
- Two types of datasets:
 - Unlabeled, such as Wikipedia Tables, mostly used for pre-training
 - Labeled, such as SPIDER (Yu et al., 2018), mostly be used for fine-tuning

Question: What is the GDP of Germany?

Table: GDP by Country in Trillions USD

(**Answer:** 3.806)

GDP by Country in Trillions USD

Country	Capital	GDP	
Germany	Berlin	3.806	
France	Paris	2.603	
Australia	Canberra	1.331	

Training Datasets (not labeled)

Dataset	Deference		Ta	sk Ca	tegor	ies		Number Large		Context
Dataset	Reference	TFC	QA	SP	TR	TMP	DI	of Tables	Tables	Context
Wikipedia Tables	Wikipedia					~	•	-	~	Surrounding Text: table caption, page title, page description, segment title, text of the segment. Table Metadata: statistics about number of headings, rows, columns, data rows.
WDC Web Table Cor- pus	(Lehmberg et al., 2016)					~	V	233M	•	Table Metadata: Table orientation, header row, key column, timestamp before and after table. Surrounding Text: table caption, text before and after table, title of HTML page.
VizNet	(Hu et al., 2019)					~	~	1M	×	Table Metadata: Column Types.
Spreadsheet	s (Dong et al., 2019)					V	,	3,410	×	Table Metadata: Cell Roles (Index, Index Name, Value Name, Aggregation and Others).

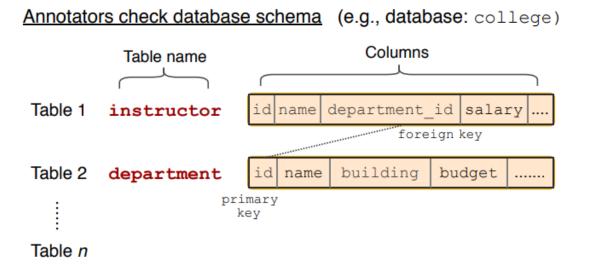
Mostly Fine-Tuning Datasets (1/2)

Dotocot Dot	Deference	forence Task Categories							Number Large	Contont
Dataset	Reference	TFC	QA	SP	TR	TMP	DI	of Tables	Tables	Context
NQ-Tables	(Herzig		/					169,898	✓	Questions: 12K.
	et al.,									
	2021)									
TABFACT	(Chen	~						16K	×	Textual Claims: 118K
IADIACI	et al.,	•						TOIX	~	claims.
	2020a)									
WikiSQL	(Zhong		~	V	/			24,241	X	Questions: 80,654.
	et al.,							,		
	2017)									
TabMCQ	(Jauhar		/		/			68	×	Questions: 9,092.
	et al.,									
	2016)									
SPIDER	(Yu et al.,			~				200	×	Questions: 10,181 Queries:
STIDER	2018)							databases	•	5,693.
WikiTable	(Pasupat		~	/				2,108	×	Questions: 22,033.
Question	and		•	•				2,100	•	Questions: 22 ,055.
(WikiTQ)	Liang,									
(**************************************	2015)									
WikiTable	(Deng et							580K		Annotations: 406K Column
TURL	al, 2020)					~		· -	×	Type, 56 Columns Property,
	,									200K Cell Entity

Mostly Fine-Tuning Datasets (2/2)

Dataset	Reference -		Task Categories					Number	Number Large	Contont
		TFC	QA	SP	TR	TMP	DI	of Tables	Tables	Context
Natural	(Kwiatkows	ski		~				169,898	V	Questions: 320K.
Questions	et al.,									
(NQ)	2019)									
OTT-QA	(Chen et al., 2021)		~		~			400K	~	Surrounding Text: page title, section title, section text limited to 12 first sentences. Questions: 45,841.
Web Query Table	(Sun et al., 2019)				~			273,816	×	Surrounding Text: captions. Queries: 21,113.
HybridQA	(Chen et al., 2020b)		•					13K	×	Questions: 72K. Surrounding Text: first 12 sentences surrounding the table.
Feverous	(Aly et al., 2021)	V						28.8K	×	Claims: 87K. Surrounding Text: article title. Table Metadata: row and column headers.

Examples: Spider, Feverous



Annotators create:

Complex question	What are the name and budget of the departments with average instructor salary greater than the overall average?
Complex SQL	<pre>SELECT T2.name, T2.budget FROM instructor as T1 JOIN department as T2 ON T1.department_id = T2.id GROUP BY T1.department_id HAVING avg(T1.salary) ></pre>
	(SELECT avg(salary) FROM instructor)

Claim: In the 2018 Naples general election, Roberto Fico, an Italian politician and member of the Five Star Movement, received 57,119 votes with 57.6 percent of the total votes.

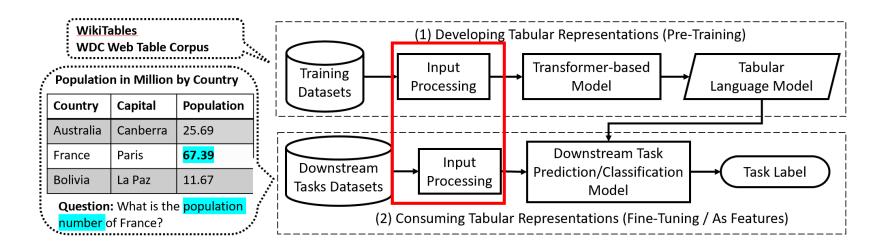
Evidence:

Page: wiki/Roberto_Fico e₁(Electoral history):

2018 general election: Naples -Fuorigrotta

Candidate	Party	Votes
Roberto Fico	Five Star	61,819
Marta Schifone Daniela Iaconis	Centre-right Centre-left	21,651 15,779

Verdict: Refuted



Input Processing

Data Retrieval and Filtering

Table Serialization: Reshaping 2D tabular structure to 1D

Context and Table Concatenation

Data Retrieval and Filtering

 Select the rows and columns from the dataset based on specified conditions or a given question

 Remove rows/attributes based on domain knowledge, task relevance, or feature importance

Data Retrieval and Filtering

- Why do we need it?
 - Meet the limit (typically of 512 tokens) of Transformers
 - Transformers architecture theoretically has no limits on the input size
 - However, practically it is not the case: self attention has squared computational complexity and memory usage on sequence length
 - Improve training time
 - Eliminate potential noise in output representations
 - Privacy regulation

(Devlin et al., 2019; Yin et al., 2020; Liu et al. 2021a)

Data Retrieval and Filtering

How?

- Can be downstream task by itself, Table Retrieval
- Using a ranking function like BM25 (Robertson et al., 1995)
- Using content snapshot (TaBERT (Yin et al., 2020))
- Term Frequency Inverse Document Frequency (TFIDF) (RCI (Glass et al., 2021))
- Setting a threshold to limit the number of columns/rows allowed (DRT (Thorne et al., 2021)
- Splitting Tables into smaller chunks (TUTA (Wang et al., 2021b), TabularNet (Du et al., 2021))
 - Overlapping windows, keep header, issues with aggregation/global context

In which city did Piotr's last 1st place finish occur?

 R_1

 R_2

 R_3

 R_4

 R_5

Year	Venue	Position	Event
2003	Tampere	3rd	EU Junior Championship
2005	Erfurt	1st	EU U23 Championship
2005	Izmir	1st	Universiade
2006	Moscow	2nd	World Indoor Championship
2007	Bangkok	1st	Universiade

Selected Rows as Content Snapshot: {R2, R3, R6}

Country	Capital	Population
Australia	Canberra	25.69
France	Paris	67.39
Bolivia	La Paz	11.67

Keeping 2 columns

Country	Population
Australia	25.69
France	67.39
Bolivia	11.67

Country	Capital	
Australia	Canberra	
France	Paris	
Bolivia	La Paz	

Keeping 2 rows

Country	Capital	Population
Australia	Canberra	25.69

Country	Capital	Population
France	Paris	67.39

Country	Capital	Population
Bolivia	La Paz	11.67

Table Serialization 1/2

Population in Million by Country		
Country Capital Population		
Australia	Canberra	25.69
France	Paris	67.39
Bolivia La Paz 11.67		

**,<mark>.....</mark>.......

- 1- Scanning the table row by row
 - Flattened table with value separators
 - Country | Capital | Population | Australia | Canberra | 25.69 ... Bolivia | La Paz | 11.67
 - Flattened table with **special token separator** to indicate beginning of a new row, new cell, header (TAPEX (Liu et al. 2021a), TUTA (Wang et al. 2021b), ForTaP (Cheng et al., 2021))
 - Country | Capital | Population [SEP] Australia | Canberra | 25.69 ... [SEP] Bolivia | La Paz | 11.67
 - Flattened table where each cell is represented as a concatenation of the column name, column type and cell value (TABERT)
 - Country: varchar: Australia | Capital: varchar: Canberra | Population: float: 25.69 ... Country: varchar: Italy | Capital: varchar: Rome | Population: float: 59.55
 - Flattened column headers only (GRAPPA (Yu et al., 2021))
 - Country | Capital | Population

Table Serialization 2/2

2- Scanning the table column by column

• Simple concatenation of column values or by using special separator tokens (DODUO (Suhara et al., 2021))

3- Combining horizontal and vertical serialization

- element-wise product (RCI (Glass et al., 2021), CLTR (Pan et al., 2021))
- average pooling and concatenation (TabularNet)
- average of row and column embeddings (TABBIE (lida et al., 2021)).

4- Transforming data to text

- using meaningful sentences generated out of the tabular data (DRT (Thorne et al., 2021))
- using table-to-text fine tuning, e.g., T5 with Totto (Parikh et al., 2020).

Name	Profession	Location
Nicholas	Doctor	Washington D.C.
Sarah	Doctor	NY

Name	Birth City	Birth Year
Sheryl		1978
Sarah	Chicago	1982
Teuvo	Ruskala	1912

Husband Name	Wife Name	Marriage Year
Nicholas	Sheryl	•••
John	Sarah	2010

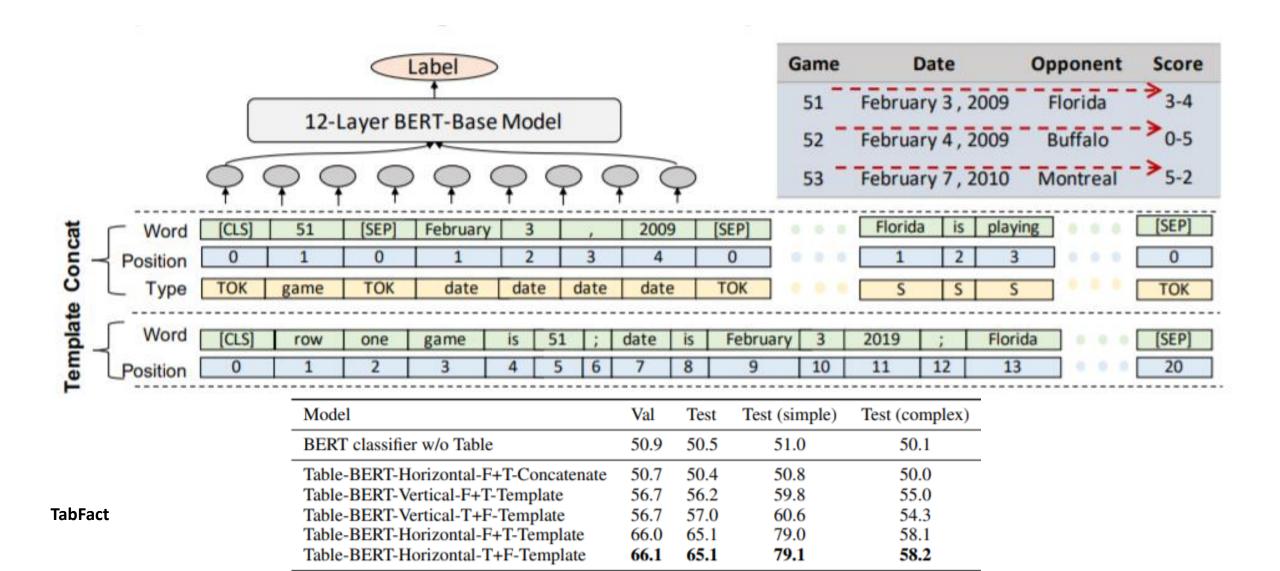
- Nicholas lives in Washington D.C. with his wife.
- Sheryl is Nicholas's wife.
- Teuvo was born in 1912 in Ruskala.
- Sheryl's mother gave birth to her in 1978.
- Nicholas is a doctor.
- Sarah was born in Chicago in 1982.
- Sarah married John in 2010.
- Sarah works in a hospital in NY as a doctor.

DRT (Thorne et al., 2021)

Table Serialization: Which method to choose?

- Most works do not report comparison for different approaches
 - One approach is typically selected and followed
- (Veltri et al., 2022) report that row performed better than column serialization in a table to text generation task
- TaBERT shows that adding type information slightly improves results
- TabFact shows that (horizontally) phrasing the input as a sentence improve results (Chen et al., 2020a)
 - Simple template "column name is cell value"

TabFact alternative serializations



Context and Table Concatenation

- Context is either prepended or appended to the serialized table
 - Common solution: prepended
- TabFact tested both strategies:
 - **no** significant difference in performance
- Type of context added usually depends on target downstream application
 - QA: a question is prepended to the serialized table.
- Some works like RCI (Glass et al., 2021) encode the context and the serialized table separately
- Others, like TABBIE (lida et al., 2021), Doduo, TabularNet, do not include context due to nature of downstream tasks, specifically TMP and DI

Context and Table parsed by row:

[CLS] Population in Million by Country [CLS] Country | Capital | Population [SEP] France | Paris | 67.39 ... [SEP] Italy | Rome | 59.55

Context and Table parsed by column:

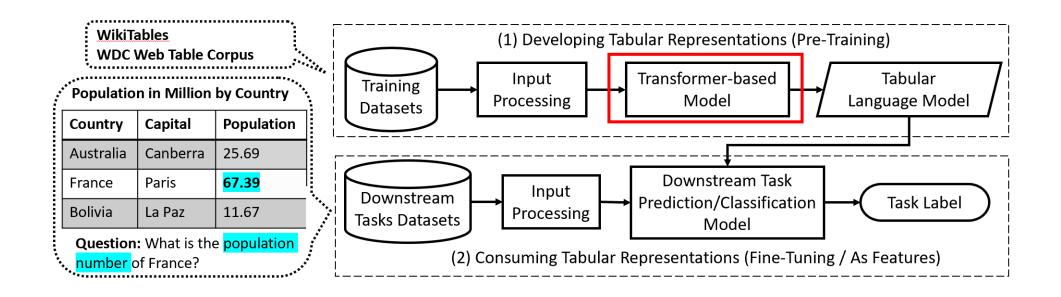
[CLS] *Population of Countries* [CLS] Country | France | ... | Italy | ... [SEP] Capital | France | ... | Rome | ... [SEP] Population | 67.39 | ... 45

Questions?

Model Training & Architecture

Customizations to account for tabular data structure

Extensions at the input/output level and/or on the internals of the architecture



Adaptations of Transformers' Architecture

- Model with tabular data structure aware
 — Customization to Vanilla transformer-based LMs
- Extensions are at different levels:
 - Input
 - Internal
 - Output
 - Training procedure

Input Level 1/2

- In alternative to special tokens, (at pre-training) additional embeddings to explicitly model the table structure
 - Position of the cell (row and column IDs), segment id: whether it is a context or a table entry, relative positional information of a token in cell/column header and rank id for sorting floats and dates

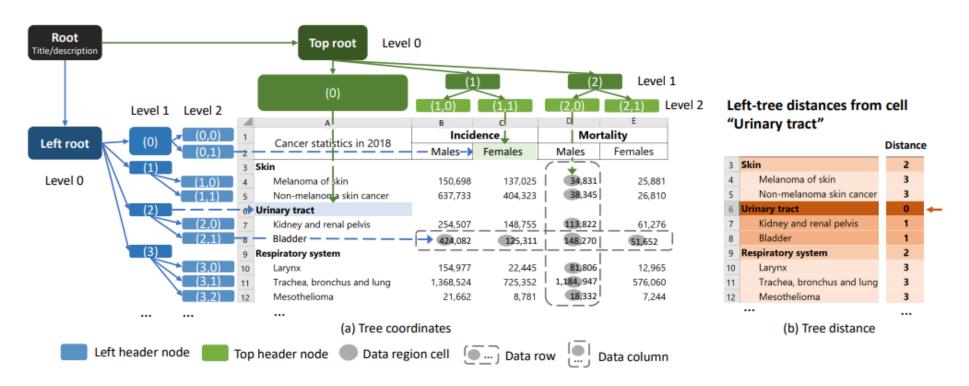
Table		
col1	col2	
0	1	
2	3	

Takan												
Token Embeddings	[CLS]	query	?	[SEP]	col	##1	col	##2	0	1	2	3
	+	+	+	+	+	+	+	+	+	+	+	+
Position Embeddings	POS _o	POS ₁	POS ₂	POS ₃	POS ₄	POS ₅	POS ₆	POS ₇	POS ₈	POS ₉	POS ₁₀	POS ₁₁
	+	+	+	+	+	+	+	+	+	+	+	+
Segment Embeddings	SEG _o	SEG _o	SEG ₀	SEG _o	SEG ₁	SEG ₁	SEG ₁	SEG ₁	SEG ₁	SEG ₁	SEG ₁	SEG ₁
	+	+	+	+	+	+	+	+	+	+	+	+
Column Embeddings	COL ₀	COL _o	COL _o	COL _o	COL,	COL,	+ COL ₂	+ COL ₂	COL,	COL ₂	COL,	+ COL ₂
Embeddings	COL _o	COL _o	COL _o	COL _o	COL,	COL,	COL ₂	COL ₂	COL,	COL ₂	COL,	COL ₂
			COL _o ROW _o	COL _o ROW _o	COL, + ROW _o	COL, + ROW _o	COL ₂ + ROW ₀	COL ₂ + ROW ₀	1	COL ₂ + ROW ₁	COL ₁ + ROW ₂	COL ₂ + ROW ₂
Embeddings Row	+	+	+	+	+	+	+	+	+	+	+	+

TAPAS (Herzig et al., 2020)

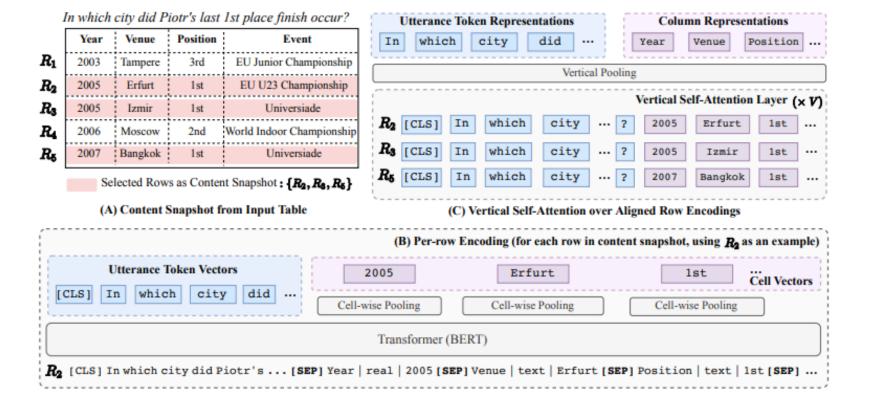
Input Level 2/2

- Tree-based positional embeddings (TUTA (Wang et al, 2021))
 - Typically for entity tables or spreadsheets
 - Encode the position of a cell using top and left embeddings of a bidimensional coordinate tree.



Internal Level

- Most updates for the attention module
- Vertical self-attention layers aggregate information to capture crossrow dependencies on cell values (TaBERT)



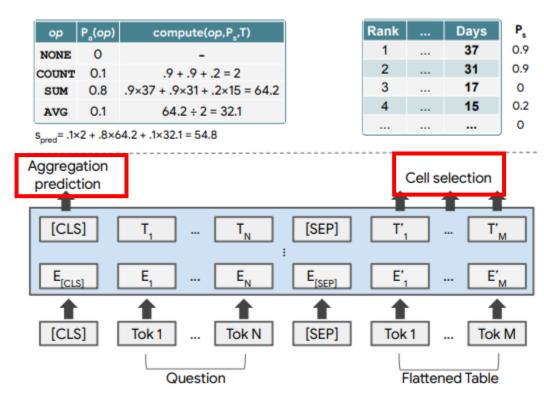
Extended to Treebased Attention for spreadsheets (TUTA)

Internal Level

- Masked self-attention (TURL (Deng et al., 2021))
 - Model takes table as an input, encodes into cell values + column headers, and uses self-attention to learn contextual relationships between cells
 - Each token in a table can only attend to its directly connected neighbors
 - Different from vanilla transformer where each element attends to all other elements

Output Level

- Additional layers added on top of the feed-forward networks (FFNs) of the LM based on the target downstream task
- Question Answering (TAPAS):
 - Additional classification layers for aggregations (SUM, COUNT, AVERAGE or NONE) and cell selection



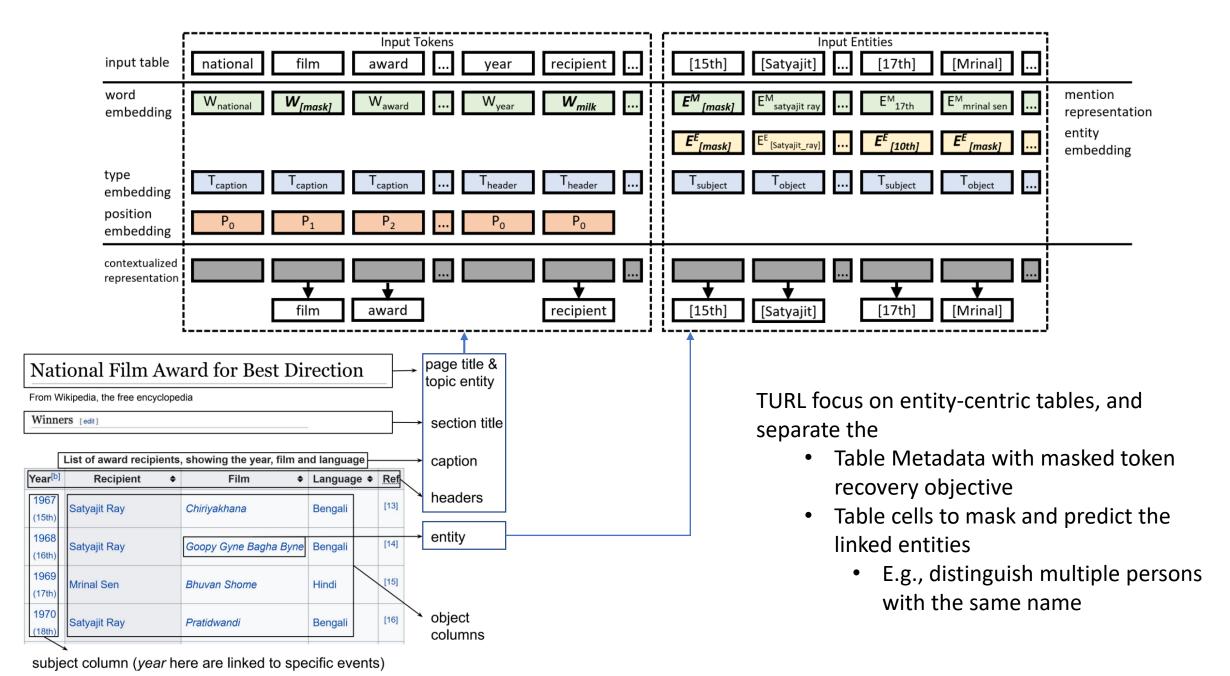
"Total number of days for the top two"

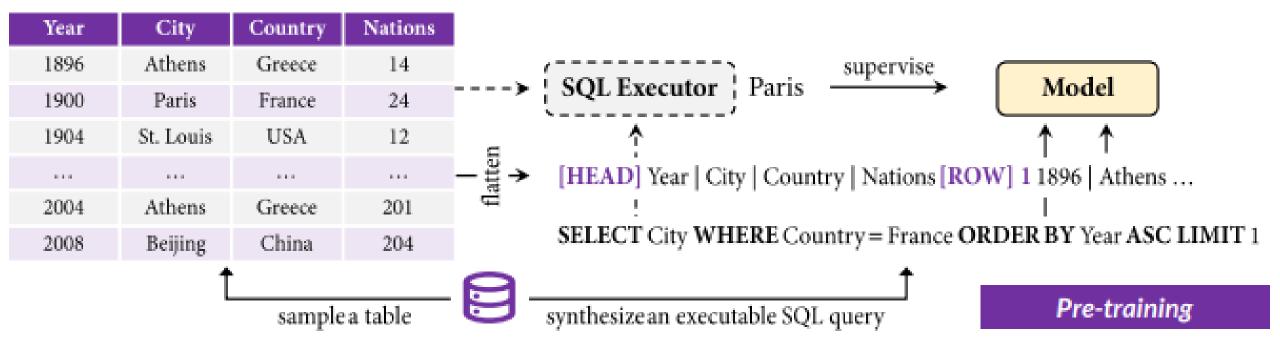
Cell prediction (right) for the selected column's table cells in bold Aggregation prediction (left)

53

Training Procedure Level: Pretraining Task

- Prior to fine-tuning
- Typically consist of reconstruction tasks, i.e., reconstruct correct input out of corrupted one
 - Usually using cross-entropy loss as objective function
- Modifications on the typical MLM are applied to consider tabular structure:
 - Masking tokens from cells
 - Masking the whole cell regardless of the number of tokens it has (TURL)
 - Enables the model to integrate the factual knowledge embedded in the table content and its context
 - Masking columns names and data types
- Use SQL engine to train the model to act as a neural SQL executor (TAPEX)
 - Mimic SQL semantics with relational tables



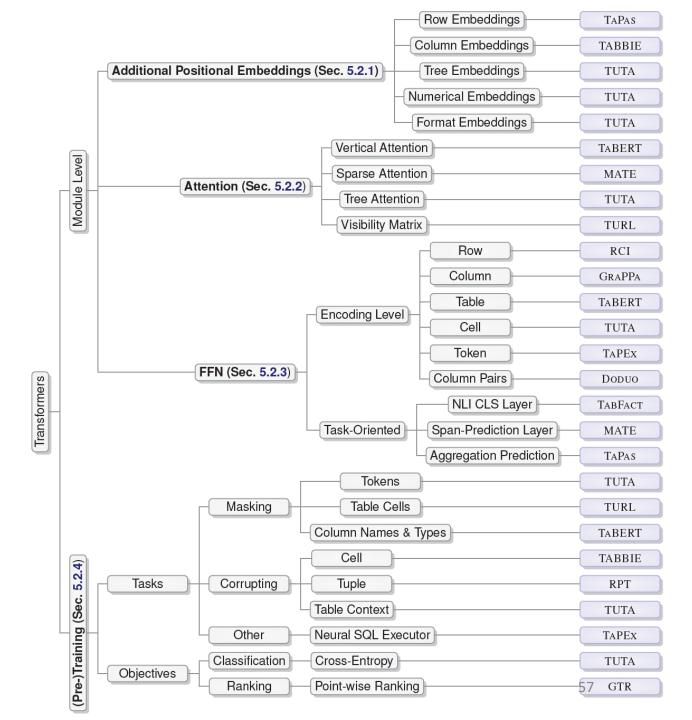


(TAPEX)

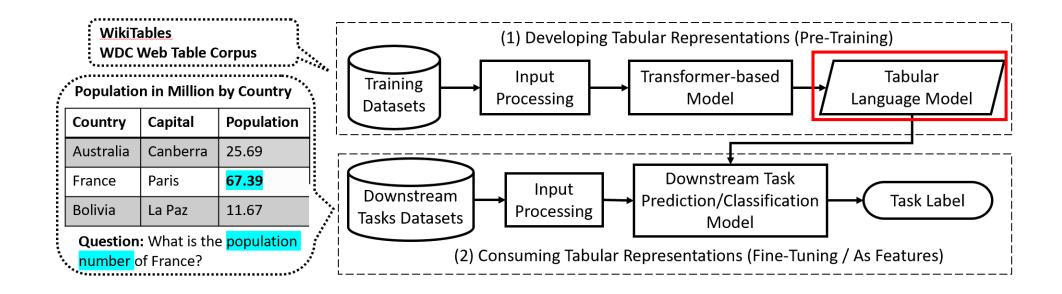
Summary of customizations for table structure aware LM

- Input level: additional embeddings
- Internal level: adjustment of attention module
- Training procedure: through tablerelated pre-training tasks masking and reconstructing cells
- Output level: task-dependent additional classification layers

(Badaro et al, 2023)



Questions?



Tabular Language Model

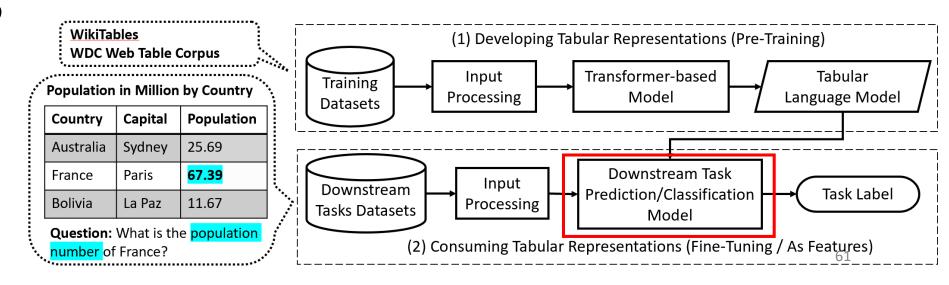
Output data representation and granularity

Tabular Language Model

- As a result of (1) two major ways to use it:
 - Build on top of the encoder with fine-tuning for downstream task
 - Use it in bigger architecture rather than encoder-oriented (as embeddings feature in ML algorithm)
- Output representations can be extracted at different granularities:
 - Token
 - Cell
 - Row
 - Column
 - Column pairs (Doduo)
 - Table
 - Table pairs (Deco)
- While token and cell are the most common, granularity depends on target task
 - E.g.: Table representation for TR task

Consuming Tabular Language Models

(2) In



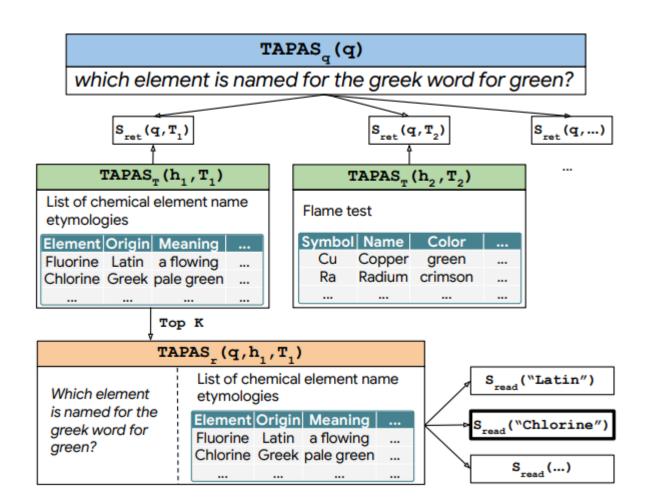
Prediction/Classification Systems

- Pre-trained transformer-based LMs act as encoders of the input and typically:
 - Used as building block in a bigger system
 - Additional layers are added on top and the entire model is fine-tuned for a specific downstream task

Prediction/Classification Systems

• LMs

- Employed as components of bigger system
- Examples:
 - DTR (Herzig et al., 2021) computes a similarity score between embeddings of question and embedding of table
 - CLTR classifies whether an associated row/column with a given question contains the answer



Tutorial Outline

- Motivation
 - Natural Language and Data-centric Applications
- Language Models and Transformers
- Developing & Consuming Tabular Data Representation
 - Training Datasets
 - Input Processing
 - Model Training & Architecture
 - Tabular Language Model
 - Consuming Tabular LMs
- Open Challenges

Complex Queries and Rich Tables

- Few systems support aggregation operations such as max, min, avg
- No support for joins

No support for dependencies

- No support for heterogeneity
 - E.g., columns with different measurement units such as adding kgs and lbs

Model Efficiency

- Transformers suffer from the upper bound limit of 512 tokens
 - Problem for large tables
- Multiple techniques to improve computation and memory usage
 - Locality sensitive hashing to replace attention
 - Approximate self-attention by a low-rank matrix
- New methods to make transformers more efficient for long context
 - Only studied for NL text and not tabular data

(Treviso et al, 2022; Zaheer et al, 2020)

Benchmarking Data Representations

- No benchmark datasets to establish baselines for tabular language models
- Current evaluation is extrinsic
 - Only considers the performance of the language model on the downstream tasks
- Need for intrinsic evaluation to evaluate the quality of those tabular representations
 - Checklist: generation of general linguistic capabilities and test types
 - We can design tests that evaluate properties of rows/columns/dependencies

(Ribeiro et al, 2020; Cappuzzo et al 2020)

Green Tabular LMs \rightarrow less data?

- Large-scale transformers with billions of parameters require heavy computation: several days of GPUs/TPUs for training
 - Contributes to global warming
 - Need for new techniques that limit carbon footprint of tabular LMs without decrease in performance of downstream tasks
- One direction: **reduce training data** by removing redundant or less informative cells, tuples, tables
 - How to identify such data is a key challenge
 - Very recent initial ideas on quality of (textual) training data (Gunasekar et al, 2023)

More general challenges

Data bias

- NLP LMs incorporate stereotypes + race, gender bias in the model parameters
 - Bias inherited from the dataset used for training the models
- Reduce bias by preprocessing training dataset or postprocessing LMs

Interpretability

- How to justify the final output for a given task?
 - E.g., provide the cells that led to a given output (True/False)
- Look at attention weights wrt input tokens to capture their influence on output

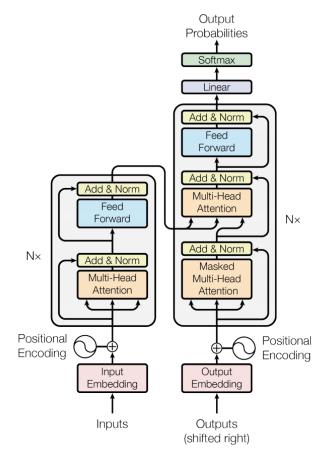
Error Analysis

- Most systems report only evaluation scores (p, r, accuracy)
- no explanations for the cases where the model fails
 - for a QA task with a set of wrong answers, a pattern could explain misclassification
 - E.g., two column names having an overlap of more than 5 characters

Conclusions

Representation learning for tabular data

Task	Task Label	Tasks Coverage	Input	N.1.1	Output
ID			\mathbf{NL}	NL	
TFC	Table-based Fact- Checking or En- tailment	Fact-Checking Text Refusal/Entailment	Table -	Claim	True/False Refused/Entailed (Data Evidence)
QA	Question Answering	Retrieving the Cells for the Answer	Table -	Question	Answer Cells
SP	Semantic Parsing	Text-to-SQL	Table -	NL Query	Formal QL
TR	Table Retrieval	Retrieving Table that Contains the Answer	Tables	- Question	Relevant Table(s)
TMP	Table Metadata Prediction	Column Type Prediction Table Type Classification Header Detection Cell Role Classification Column Relation Annotation Column Name Prediction	Table		Column Types Table Types Header Row Cell Role Relation between Two Cols Column Name
DI	Data Imputation	Cell Content Population	Table Cell Va	with Corrupted	d Table with Complete Cell Values



Questions?

- (Aly et al, 2021) Rami Aly, Zhijiang Guo, Michael Sejr Schlichtkrull, James Thorne, Andreas Vlachos, Christos Christodoulopoulos, Oana Cocarascu, and Arpit Mittal. 2021. FEVEROUS: Fact Extraction and VERification Over Unstructured and Structured information. In NeurIPS.
- Gilbert Badaro, Ramy Baly, Hazem Hajj, Wassim El-Hajj, Khaled Bashir Shaban, Nizar Habash, Ahmad Al-Sallab, and Ali Hamdi. 2019. A survey of opinion mining in Arabic: A comprehensive system perspective covering challenges and advances in tools, resources, models, applications, and visualizations. ACM Transactions on Asian and Low-Resource Language Information Processing (TALLIP) 18, 3 (2019), 1–52.
- Gilbert Badaro, Hazem Hajj, and Nizar Habash. 2020. A link prediction approach for accurately mapping a large-scale Arabic lexical resource to English WordNet. ACM Transactions on Asian and Low-Resource Language Information Processing (TALLIP) 19, 6 (2020), 1–38.
- Gilbert Badaro, Mohammed Saeed, and Paolo Papotti. 2023. Transformers for Tabular Data Representation: A survey of models and applications. TACL 2023.
- Chandra Sekhar Bhagavatula, Thanapon Noraset, and Doug Downey. 2015. TabEL: Entity linking in web tables. In International Semantic Web Conference. Springer, 425–441.
- (Cappuzzo et al, 2020) Riccardo Cappuzzo, Paolo Papotti, and Saravanan Thirumuruganathan. 2020. Creating embeddings of heterogeneous relational datasets for data integration tasks. In Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data. 1335–1349.
- (Chen et al., 2020a) Wenhu Chen, Hongmin Wang, Jianshu Chen, Yunkai Zhang, Hong Wang, Shiyang Li, Xiyou Zhou, and William Yang Wang. 2020.
 TabFact: A Largescale Dataset for Table-based Fact Verification. In International Conference on Learning Representations.
 https://openreview.net/forum?id=rkeJRhNYDH
- (Deng et al, 2020) Xiang Deng, Huan Sun, Alyssa Lees, You Wu, and Cong Yu. 2020. TURL: Table understanding through representation learning. Proceedings of the VLDB Endowment 14, 3 (2020), 307–319.
- (Devlin et al., 2019) Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. In NACL: HLT. ACL, Minneapolis, Minnesota, 4171–4186. https://doi.org/10.18653/v1/N19-1423
- Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias
 Minderer, Georg Heigold, Sylvain Gelly, et al. 2020. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. In International
 Conference on Learning Representations.

- (Du et al., 2021) Lun Du, Fei Gao, Xu Chen, Ran Jia, Junshan Wang, Jiang Zhang, Shi Han, and Dongmei Zhang. 2021. TabularNet: A Neural Network Architecture for Understanding Semantic Structures of Tabular Data. In ACM SIGKDD. 322–331.
- (Eisonschlos et al., 2021) Julian Martin Eisenschlos, Maharshi Gor, Thomas Müller, and William W Cohen. 2021. MATE: Multi-view Attention for Table Transformer Efficiency. arXiv preprint arXiv:2109.04312 (2021).
- (Eisenschlos et al, 2020) Julian Eisenschlos, Syrine Krichene, and Thomas Müller. 2020. Understanding tables with intermediate pre-training. In EMNLP 2020, pages 281–296. ACL.
- (Glass et al., 2021) Michael Glass, Mustafa Canim, Alfio Gliozzo, Saneem Chemmengath, Vishwajeet Kumar, Rishav Chakravarti, Avirup Sil, Feifei Pan, Samarth Bharadwaj, and Nicolas Rodolfo Fauceglia. 2021. Capturing Row and Column Semantics in Transformer Based Question Answering over Tables. In NACL: HLT. 1212–1224.
- (Gkini et al, 2021) Orest Gkini, Theofilos Belmpas, Georgia Koutrika, Yannis E. Ioannidis: An In-Depth Benchmarking of Text-to-SQL Systems.
 SIGMOD Conference 2021: 632-644
- Yuan Gong, Yu-An Chung, and James Glass. 2021. AST: Audio Spectrogram Transformer. arXiv preprint arXiv:2104.01778 (2021).
- (Herzig et al., 2021) Jonathan Herzig, Thomas Mueller, Syrine Krichene, and Julian Eisenschlos. 2021. Open Domain Question Answering over Tables via Dense Retrieval. In NACL: HLT. 512–519.
- (Herzig et al, 2020) Jonathan Herzig, Pawel Krzysztof Nowak, Thomas Mueller, Francesco Piccinno, and Julian Eisenschlos. 2020. TaPas: Weakly Supervised Table Parsing via Pretraining. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. 4320–4333.
- (lida et al., 2021) Hiroshi lida, Dung Thai, Varun Manjunatha, and Mohit lyyer. 2021. TABBIE: Pretrained Representations of Tabular Data. In NACL: HLT. 3446–3456.
- (Karagiannis et al, 2020) Georgios Karagiannis, Mohammed Saeed, Paolo Papotti, and Immanuel Trummer. 2020. Scrutinizer: A Mixed-Initiative Approach to Large-Scale, Data-Driven Claim Verification. Proc. VLDB Endow. 13, 11 (2020), 2508–2521.
- George Katsogiannis-Meimarakis and Georgia Koutrika. 2021. A Deep Dive into Deep Learning Approaches for Text-to-SQL Systems. In Proceedings of the 2021 International Conference on Management of Data. 2846–2851.
- [20] Bogdan Kostić, Julian Risch, and Timo Möller. 2021. Multi-modal Retrieval of Tables and Texts Using Tri-encoder Models. In Proceedings of the 3rd Workshop on Machine Reading for Question Answering. ACL, Punta Cana, Dominican Republic, 82–91.

- (Lehmberg et al., 2016) Oliver Lehmberg, Dominique Ritze, Robert Meusel, and Christian Bizer. 2016. A large public corpus of web tables containing time and context metadata. In WWW Companion. 75–76.
- Yuliang Li, Jinfeng Li, Yoshihiko Suhara, AnHai Doan, and Wang-Chiew Tan. 2020. Deep Entity Matching with Pre-Trained Language Models. Proc. VLDB Endow. 14, 1 (2020), 50–60. https://doi.org/10.14778/3421424.3421431
- (Liu et al., 2021) Qian Liu, Bei Chen, Jiaqi Guo, Zeqi Lin, and Jian-guang Lou. 2021. TAPEX: Table pre-training via learning a neural SQL executor. arXiv preprint arXiv:2107.07653 (2021).
- Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019.
 RoBERTa: A Robustly Optimized BERT Pretraining Approach. CoRR abs/1907.11692 (2019). arXiv:1907.11692 http://arxiv.org/abs/1907.11692
- (Mikolov et al, 2013) Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781.
- (Pan et al, 2021) Feifei Pan, Mustafa Canim, Michael Glass, Alfio Gliozzo, and Peter Fox. 2021. CLTR: An End-to-End, Transformer-Based System for Cell-Level Table Retrieval and Table Question Answering. In ACL System Demo. 202–209.
- Marco Tulio Ribeiro, Tongshuang Wu, Carlos Guestrin, and Sameer Singh. 2020. Beyond Accuracy: Behavioral Testing of NLP Models with CheckList. In ACL. ACL, Online, 4902–4912. https://doi.org/10.18653/v1/2020.acl-main.442
- Roy Schwartz, Jesse Dodge, Noah A Smith, and Oren Etzioni. 2020. Green ai. Commun. ACM 63, 12 (2020), 54–63.
- Emma Strubell, Ananya Ganesh, and Andrew McCallum. 2020. Energy and policy considerations for modern deep learning research. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34. 13693–13696.
- Yoshihiko Suhara, Jinfeng Li, Yuliang Li, Dan Zhang, Çağatay Demiralp, Chen Chen, and Wang-Chiew Tan. 2021. Annotating Columns with Pretrained Language Models. arXiv preprint arXiv:2104.01785 (2021).
- (Tang et al, 2021) Nan Tang, Ju Fan, Fangyi Li, Jianhong Tu, Xiaoyong Du, Guoliang Li, Samuel Madden, and Mourad Ouzzani. 2021. RPT: Relational Pre-trained Transformer Is Almost All You Need towards Democratizing Data Preparation. Proc. VLDB Endow. 14, 8 (2021), 1254–1261.

- (Thorne et al., 2021) James Thorne, Majid Yazdani, Marzieh Saeidi, Fabrizio Silvestri, Sebastian Riedel, and Alon Halevy. 2021. Database reasoning over text. In ACL. 3091–3104.
- (Vaswani et al, 2017) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing systems, 30
- Enzo Veltri, Donatello Santoro, Gilbert Badaro, Mohammed Saeed, and Paolo Papotti. 2022. Pythia: Unsupervised Generation of Ambiguous Textual Claims from Relational Data. In SIGMOD Demo track. ACM.
- (Veltri et al., 2022) Enzo Veltri, Gilbert Badaro, Mohammed Saeed, and Paolo Papotti. 2022. Data Ambiguity Profiling for the Generation of Training Examples. Accepted In ICDE 2023.
- (Wang et al, 2021) Fei Wang, Kexuan Sun, Muhao Chen, Jay Pujara, and Pedro Szekely. 2021. Retrieving Complex Tables with Multi-Granular Graph Representation Learning. In SIGIR. ACM, 1472–1482.
- (Wang et al., 2021b) [34] Zhiruo Wang, Haoyu Dong, Ran Jia, Jia Li, Zhiyi Fu, Shi Han, and Dongmei Zhang. 2021. TUTA: Tree-based Transformers for Generally Structured Table Pre-training. In ACM SIGKDD. 1780–1790.
- Xiaoyu Yang and Xiaodan Zhu. 2021. Exploring Decomposition for Table-based Fact Verification. In EMNLP 2021. ACL, Punta Cana, Dominican Republic, 1045—1052. https://aclanthology.org/2021.findings-emnlp.90
- (Yin et al., 2020) Pengcheng Yin, Graham Neubig, Wen-tau Yih, and Sebastian Riedel. 2020. TaBERT: Pretraining for Joint Understanding of Textual and Tabular Data. In ACL. ACL, Online, 8413–8426. https://doi.org/10.18653/v1/2020.acl-main.745
- (Yu et al, 2021) Tao Yu, Chien-Sheng Wu, Xi Victoria Lin, bailin wang, Yi Chern Tan, Xinyi Yang, Dragomir Radev, richard socher, and Caiming Xiong. 2021. GraPPa: GrammarAugmented Pre-Training for Table Semantic Parsing. In International Conference on Learning Representations.
- (Yu et al., 2018) Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingning Yao, Shanelle Roman, Zilin Zhang, and Dragomir Radev. 2018. Spider: A Large-Scale Human-Labeled Dataset for Complex and Cross-Domain Semantic Parsing and Text-to-SQL Task. In EMNLP. ACL, 3911–3921.
- Li, Yuliang, et al. "Deep entity matching with pre-trained language models." Proceedings of the VLDB Endowment 14.1 (2020): 50-60.
- (Zhong et al., 2017) Victor Zhong, Caiming Xiong, and Richard Socher. 2017. Seq2SQL: Generating structured queries from natural language using reinforcement learning. arXiv preprint arXiv:1709.00103 (2017).
- (Cheng et al., 2021), Zhoujun Cheng, Haoyu Dong, Fan Cheng, Ran Jia, Pengfei Wu, Shi Han, and Dongmei Zhang. 2021. Fortap: Using formulae for numerical-reasoning-aware table pretraining. arXiv preprint arXiv:2109.07323.
- (Hu et al., 2019) Kevin Hu, Snehalkumar'Neil'S Gaikwad, Madelon Hulsebos, Michiel A Bakker, Emanuel Zgraggen, César Hidalgo, Tim Kraska, Guoliang Li, Arvind Satyanarayan, and Çağatay Demiralp. 2019. VizNet: Towards a large-scale visualization learning and benchmarking repository. CHI

- (Dong et al., 2019) Haoyu Dong, Shijie Liu, Zhouyu Fu, Shi Han, and Dongmei Zhang. 2019. Semantic structure extraction for spreadsheet tables with a multi-task learning architecture. In Workshop on Document Intelligence at NeurIPS 2019
- (Jauhar et al., 2016) Sujay Kumar Jauhar, Peter Turney, and Eduard Hovy. 2016. TabMCQ: A dataset of general knowledge tables and multiple-choice questions. arXiv preprint arXiv:1602.03960.
- (Pasupat and Liang, 2015) Panupong Pasupat and Percy Liang. "Compositional semantic parsing on semi-structured tables." arXiv preprint arXiv:1508.00305 (2015).
- (Kwiatkowski et al., 2019) Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, et al. 2019. Natural questions: a benchmark for question answering research. TACL, 7:453–466.
- (Chen et al., 2021) Wenhu Chen, Ming-Wei Chang, Eva Schlinger, William Yang Wang, and William W. Cohen. 2021. Open question answering over tables and text. In ICLR
- (Chen et al., 2020b) Wenhu Chen, Hanwen Zha, Zhiyu Chen, Wenhan Xiong, Hong Wang, and William Yang Wang. 2020b. HybridQA: A
 dataset of multihop question answering over tabular and textual data. In Findings of the Association for Computational Linguistics: EMNLP
 2020, pages 1026–1036
- (Robertson et al., 1995) Stephen E Robertson, Steve Walker, Susan Jones, Micheline M Hancock-Beaulieu, Mike Gatford, et al. 1995. Okapi at trec-3. Nist Special Publication Sp, 109:109.
- (Treviso et al, 2022) Treviso, M. et al, "Efficient Methods for Natural Language Processing: A Survey", arXiv e-prints 2022.
- (Yang et al 2009) Xiaoyan Yang, Cecilia M. Procopiuc, Divesh Srivastava: Summarizing Relational Databases. Proc. VLDB Endow. 2(1) (2009)
- (Zaheer et al, 2020) Big Bird: Transformers for Longer Sequences. NeurIPS 2020
- (Zhang et al, 2020) Sato: Contextual Semantic Type Detection in Tables. Proc. VLDB Endow. 13(11): (2020)

- Material and Google Colab
 - https://github.com/madelonhulsebos/neural-table-representations-tutorial-2023

